Fault Tolerant Control Using Proportional-Integral-Derivative Controller Tuned by Genetic Algorithm
نویسندگان
چکیده
Problem statement: The growing demand for reliability, maintainability and survivability in industrial processes has drawn significant research in fault detection and fault tolerant control domain. A fault is usually defined as an unexpected change in a system, such as component malfunction and variations in operating condition, which tends to degrade the overall system performance. The purpose of fault detection is to detect these malfunctions to take proper action in order to prevent faults from developing into a total system failure. Approach: In this study an effective integrated fault detection and fault tolerant control scheme was developed for a class of LTI system. The scheme was based on a Kalman filter for simultaneous state and fault parameter estimation, statistical decisions for fault detection and activation of controller reconfiguration. Proportional-Integral-Derivative (PID) control schemes continue to provide the simplest and yet effective solutions to most of the control engineering applications today. Determination or tuning of the PID parameters continues to be important as these parameters have a great influence on the stability and performance of the control system. In this study GA was proposed to tune the PID controller. Results: The results reflect that proposed scheme improves the performance of the process in terms of time domain specifications, robustness to parametric changes and optimum stability. Also, A comparison with the conventional Ziegler-Nichols method proves the superiority of GA based system. Conclusion: This study demonstrates the effectiveness of genetic algorithm in tuning of a PID controller with optimum parameters. It is, moreover, proved to be robust to the variations in plant dynamic characteristics and disturbances assuring a parameter-insensitive operation of the process.
منابع مشابه
Quadrotor Control Using Fractional-Order PI^λ D^μ Control
Quadrotor control has been noted for its trouble as the consequence of the high maneuverability, system nonlinearity and strongly coupled multivariable. This paper deals with the simulation depend on proposed controller of a quadrotor that can overcome this trouble. The mathematical model of quadrotor is determined using a Newton-Euler formulation. Fractional Order Proportional Integral Derivat...
متن کاملDynamic Modeling and Controller Design of Distribution Static Compensator in a Microgrid Based on Combination of Fuzzy Set and Galaxy-based Search Algorithm
This paper presents a nonlinear controller for a Distribution Static Compensator (DSTATCOM) of a microgrid incorporating the Distributed Generation (DG) units. The nonlinear control has been designed based on partial feedback linearization theory and Proportional-Integral-Derivative (PID) controllers try to adjust the voltage and trace the output. This paper has proposed a combination of a fuz...
متن کاملAdaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition
Nowadays, permanent magnet synchronous motors have been widely used in industry due to the elimination of excitation losses, longer life and higher efficiency. Errors in engine and drive systems are unavoidable during operation. Therefore, a suitable scenario should be considered for when these systems fail. If the necessary predictions and control algorithms are not considered for the error co...
متن کاملOptimizing control motion of a human arm With PSO-PID controller
Functional electrical stimulation (FES) is the most commonly used system for restoring function after spinal cord injury (SCI). In this study, we used a model consists of a joint, two links with one degree of freedom, and two muscles as flexor and extensor of the joint, which simulated in MATLAB using SimMechanics and Simulink Toolboxes. The muscle model is based on Zajac musculotendon actuator...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011